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We report a computer simulation study of viscous fingering patterns in a lifting Hele-Shaw cell with grooves.
Here circular or square grooves concentric to the plates are etched on the lower plate. Experiments show that
the presence of such grooves affect formation of viscous fingers quite strongly. We report a simulated pressure
map generated in such grooved cells, when the two plates are separated with a constant force and compare the
patterns with experiments. Variation in the simulated patterns for different fluid viscosity and lifting force is
also studied.
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I. INTRODUCTION

The Hele-Shaw �HS� cell �1� is a simple apparatus for
studying the instability developed at the interface of fluids of
different viscosities, known as viscous fingering �VF� �2,3�.
The normal HS cell consists of two glass plates separated by
a small gap, containing the more viscous fluid. There is a
hole in the upper plate, through which the less viscous fluid
is forced into the cell �4�.

The lifting Hele-Shaw cell �LHSC� is a modified version
of the normal HS cell. Here, the plates are drawn apart, caus-
ing the less viscous fluid to enter from the sides. The more
viscous fluid, sandwiched between the two plates, is dis-
placed in the process and fingering patterns are formed at the
interface �5–7�.

The effect of anisotropy, introduced through patterns on
the lower plate of the normal HS cell is well known �8–10�.
Patterns on the lower plate also have a significant effect in
LHSC �11�. The time of plate separation and pattern forma-
tion with circular grooves was reported in �11�.

In the present paper we report experiments on LHSC with
square grooves. Then we report a computer simulation code,
developed for generating viscous fingering patterns in the
LHSC with circular and square grooves and compare the
resulting patterns with experiments.

With grooves etched on to the lower plate, the pressure
distribution conforms to the symmetry of the grooves in ad-
dition to the overall radial symmetry of the setup and pro-
duces interesting changes in fingering patterns. Here we
simulate grooved LHSC at a constant lifting force. The pres-
sure distribution is mapped out and the contours of isobars
and finger advancement are presented for LHSC without
grooves as well as with grooves of different symmetry. It is
seen that the qualitative features of the experimental VF
formed with square and circular grooves is well reproduced.
In the numerical model, the effect of the grooves is taken
into account simply by imposing an equalization of the pres-
sure along it. The rationale behind this is the observation in
experiments, that once a finger reaches a groove, air imme-
diately spreads all over the groove, equalizing the pressure
along it. Even this simplified approach demonstrates the dif-
ference in the pressure distribution between plane and

grooved plates. Differences in groove patterns also have a
significant effect on fingering.

The HS and its variants serve as model systems for a
number of practical problems. The disordered version of the
HS cell �12� has been studied as a model for geological po-
rous media and rough surfaces. The present grooved version
may be considered as a model for fractured surfaces with
channels. Opening up of cracked porous rocks, which may
be partially saturated by one or more fluids can be modeled,
along directions suggested from this study.

The LHSC is also an appropriate model for practical
problems in adhesion �13–15�. The grooved LHSC can be
used to study adhesion between rough or patterned surfaces.
Different interesting modifications of the HS cell are re-
viewed in �16�.

II. LHSC EXPERIMENT

The lifting Hele-Shaw cell consists of two plates of
toughened float glass. The plates are 10 cm in diameter and
0.5 cm in thickness.

Initially a small volume of fluid measured accurately with
the help of an accupipette is placed at the center of the sta-
tionary lower plate. For the grooved plates the fluid is placed
at the center of the groove �as far as possible, since the
process is manual�. The upper plate, which is movable, is
pressed on the lower plate carrying the blob of fluid. This
creates a situation where a fluid having higher viscosity is
surrounded by one with lower viscosity �air in this case� and
the combination is sandwiched between two parallel plates.
Then the upper plate is slowly lifted, with a constant force,
keeping it parallel to the lower plate. An air compressor op-
erating a pneumatic cylinder-piston controls the lifting force.
The dynamic profile of the moving fluid—air interface is
recorded by a charge-coupled device �CCD� camera, placed
below the lower glass plate.

In this study, we report anisotropy in the setup, with
etched patterns on the lower glass plate. Differences in pat-
terns between �i� a plane glass plate, �ii� a plate with a cir-
cular groove and �iii� a plate with square grooves are experi-
mentally recorded. Figure 1 shows patterns generated with
this set up for the lower plate �A� plane, �B� circular
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grooved, and �C� square grooved, with a Newtonian fluid—
olive oil. The patterns with plane and circular grooved plates
have been reported earlier in �11�, they are included here for
comparison with square groove plate patterns. The square
grooved plate used here has two square grooves, the smaller
one is etched inside the bigger and rotated 45°, with respect
to it.

III. THEORY

In the normal Hele-Shaw cell, usually the invading fluid is
air and is assumed to be nonviscous. The pressure distribu-
tion in the displaced fluid is obtained as a solution of
Laplace’s equation �2�. This results from a two-dimensional
flow between two plates with a constant separation b.

�2P = 0. �1�

However, in the LHSC, the plate separation b�t� becomes a
function of time. The problem can still be considered as a
quasi-two-dimensional problem, with P now a solution of
Poisson’s equation �17,18,15�. The idea is as follows: we
look at an elementary area da=dxdy at a position x ,y on the
plate. During lifting, we assign the volume occupied by the
fluid b�t�da to the cell at x ,y. Here b�t� is the height of the
fluid column above da. As b�t� increases, the effective fluid
volume in the cell increases and Poisson equation becomes
valid, rather than Laplace’s. The source term in Poisson
equation can be determined from the lifting conditions.

We follow essentially the approach of Thamida �15�. The
z axis is taken normal to the plates and the fluid lies in the
x-y plane. The boundary conditions are—the pressure at the
interface of the displaced and invading fluid. This is the at-
mospheric pressure P0. The pressure integrated over the
whole area a of the displaced fluid is the constant lifting
force −F,

� Pdxdy = − F . �2�

Since the volume of the fluid, assumed incompressible is a
constant V0,

V0 = a�t�b�t� . �3�

We start with the continuity equation for the incompressible
fluid,

� · u = 0, �4�

where, u is the velocity of the fluid. i.e.,

�ux

�x
+

�uy

�y
+

�uz

�z
= 0. �5�

Invoking the thin film lubrication approximation, assum-
ing that uz is independent of x and y, one has

�uz

�z
=

1

b

db

dt
. �6�

Darcy’s law relates the lateral fluid velocity to the local pres-
sure gradient as

ux = −
b2

12�

�P

�x
�7�

and a similar relation for uy, here � is the viscosity of the
higher viscosity fluid. So, finally the two-dimensional Pois-
son equation to be solved is

�2P = −
12�

a0
2 a

da

dt
. �8�

Here, a0 is the initial area occupied by the higher viscosity
fluid. We have written the equation in dimensional form, but
we are at present making only a qualitative comparison of
the patterns with experiments, so exact units and numerical
values may be considered as arbitrary.

The above equations cannot be solved analytically, after
the initial linear response regime. We solve the equations
numerically, to simulate the growth of fingers, the details are
given in the next section.

The presence of grooves makes the situation considerably
complex. At present we consider one groove only, either cir-
cular or square. The presence of the groove is taken into
account as an equalizing effect on the contour with the de-
sired shape. Other factors, such as the change of fluid depth
at the groove are ignored.

IV. COMPUTER SIMULATION ALGORITHM

In conformity with the symmetry of the setup, we formu-
late the problem initially in polar coordinates. The plates are
considered to be circular with radius r. r varies from 1 to 24
and � from 0 to 180. The polar coordinates of the system are
then converted to Cartesian coordinates, through the rela-
tions

x = r cos���, y = r sin ��� . �9�

Only the integral part of x and y are retained. We have thus a
circular arrangement of sites on a square lattice.

We introduce stochasticity in the form of a random initial
disturbance along the boundary of the fluid blob. Each site
on the circular boundary is given an indentation varying ran-
domly between 0 and 3 units. These indentations represent
fluctuations due to thermal noise, or surface irregularity and

FIG. 1. �Color online� Experimentally obtained viscous fingers
for �a� plane plate, �b� circular grooved plate, and �c� square
grooved plate with a Newtonian fluid. The square groove has an-
other smaller square groove inside rotated at angle 45° to the first.
Secondary fingers can be seen starting from the grooves, where the
air has spread very rapidly.
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may grow into a finger. We have repeated the simulation for
at least ten different initial random configurations, for each
parameter set, to check reproducibility of results.

A. Plane lower plate

In the case of a plane lower plate, the algorithm is as
follows:

�1� Fluid sites occupying a circular area a0 are marked by
an index 1 and sites occupied by air are marked by 0.

�2� The boundary conditions are set as a constant pressure
�atmospheric, taken as 0� at the outer periphery of the fluid
and a negative value −p0= p00 at the center. �, a0, and p00
are parameters determining the initial conditions.

�3� Laplace equation is solved, to get the initial pressure
distribution and the pressure at each site is added to find the
total lifting force −F. Darcy’s law Eq. �7� is used to find the
fluid velocity at each site, from the pressure gradient.

�4� The outer periphery is updated by allowing the fluid to
move according to the velocity obtained in the previous step.

�5� Since F must be maintained constant, the pressure at
the center −p0 is increased in steps, until the pressure distri-
bution is such that the condition, �P�x ,y�=−F, is satisfied
for the updated pressure P�x ,y� at each site.

�6� Now the pressure distribution is updated solving Pois-
son’s Eq. �8� taking into account the new area. A suitable
time interval �t is chosen as the unit of time, so �at+1
−at� /�t is the rate of change of area in Eq. �8�. Each time the
pressure distribution changes, the constant force condition
�P�x ,y�=−F is re-established, by manipulating −p0.

�7� Darcy’s law is again invoked to get the fluid veloci-
ties, and steps 4 to 6 are repeated as long as necessary to map
the evolving fluid boundary and hence the finger growth. To
solve Laplace equation and Eq. �8�, we use our own codes
based on the formalism described in standard literature such
as �19,20�.

B. Grooved lower plates

We have simulated the fingering when there is a single
circular or square groove etched on the lower plate. The
simulation algorithm is as follows: we assume that the pres-
sure along the groove is equal, i.e., there is an isobar having
the shape of the groove in the system. The pressure on the
isobar of course changes with time.

As already discussed, this is borne out by experiment. The
experimental development of the fingers shows that spread-
ing of air along the groove is extremely fast compared to
finger growth in the plane region. Subsequently, growth of
secondary fingers from the groove is preferred, growth of the
other primary fingers being inhibited.

The details of the simulation algorithm for the grooved
plate problem will be clear from the flowchart shown in Fig.
2. The essential modifications of the simulation algorithm are
as follows. We initially calculate the pressure distribution
from Laplace’s equation with boundary conditions as before,
forgetting about the groove. Then we calculate the average of
the pressure over all the groove sites and reassign that aver-
age value to all groove sites.

As before, the condition for constant lifting force is main-
tained through the condition �P�x ,y�=−F, ensured by ad-
justment of p0. In the lifting step, pressure is calculated from
Poissons’s equation, with the appropriate pressure at the cen-
ter and groove pressure equalized as before. In the step when
the fingers actually advance, according to Darcy’s law, we
use Laplace equation with the groove �having the equally
distributed pressure previously determined� as the inner
boundary and the outer fluid-air interface with 0 pressure as
the outer boundary. Here Laplace is used instead of Poisson,
since the increased height for this step has already been taken
into account. These steps are repeated as long as at least one
of the fingers touches the groove, refer to Fig. 2.

Patterns for circular fluid blobs of radius 24 and a circular
groove of radius 8 have been simulated. For a plate with a
square groove, exactly the same procedure is followed. The
simulation is continued until the fingers reach the groove.
The different colors correspond to decreasing pressure, start-
ing from the outer boundary. The positions of the circular
and square grooves are marked in black.

It is to be noted that, at each time step after the initial, the
pressure P�x ,y� is calculated first from Poisson’s equation, in
order to get the average pressure along the groove. Force
conservation is ensured, and then the pressure distribution is
again calculated from Laplace equation with the groove as
the inner boundary. This pressure distribution is used in Dar-
cy’s law to get the interface velocity. The actual advance-
ment of the fingers, occurs of course, only once in a time
step. At present, our system size is not very large, so the
choice of the time interval �t becomes restricted. We choose
the interval, which is large enough to produce a finite finger
advancement, but is small enough to show several successive
finger contours, before reaching the center. We have checked
that system sizes up to 50, produce similar results. A detailed
study of larger systems is in progress.

V. RESULTS AND DISCUSSION

One of our primary objectives is to see how the pressure
variation within the fluid changes, when the upper plate is

FIG. 2. Flowchart illustrating the sequence of steps followed for
the simulation of the grooved patterns.
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lifted at a constant force. We have studied the development
of fingers on a fluid blob of radius 24 units. The results we
have presented are for �=0.014–0.017. The initial central
pressure p00, which determines the lifting force has been
varied from 13 to 15. All parameter values are in arbitrary
units. For still lower pressure there is no fingering. �t has
been taken as 0.7, this makes the finger advancement length
optimum. There is scope for variation of parameter combi-
nations to look at larger sized systems.

We have chosen the parameter values such that about
5–10 time steps take the fingers to the center for the plane
plate. Since fingers are advanced in discrete steps determined
by the velocity, a velocity less than 1, means no advancement
in that step.

A. Plane plate

Advancement of the fingers at different time steps is
shown in Fig. 3. For the plane plate with no grooves it took

6 time steps for the fingers to reach the center in this particu-
lar realization.

The plate separation at each time step can be calculated
from the inverse of the area covered by the fluid, since the
volume of fluid is constant. We find that the separation in-
creases exponentially, some results are shown in Fig. 4.

Interestingly, the experimental results also show an expo-
nential increase �21�, though this is not predicted from theory
�15�. Experimentally obtained plate separation, also calcu-
lated from volume divided by area of contact of fluid, as a
function of time �averaged over five experiments� is shown
in Fig. 5. The exponential fit is also shown. Figure 6 shows
the variation of the fluid area of contact, as function of �.
For smaller �, fingers penetrate more and the area of contact
decreases strongly. Simulations for each set of parameters
have been done for ten different random initial configura-
tions, and average results are presented here.

The simulated pressure distribution in the plane plate with
no grooves is shown in Fig. 7. The different colors �shades�
represent ranges of pressure with a difference of 1 in arbi-
trary units. The pressure at the boundary is 0 and at the
center it is −30.

FIG. 3. �Color online� A viscous fingering pattern generated by
simulation of the lifting process at constant force, with viscosity
parameter 0.016 and initial pressure at center 14.6. The different
symbols indicate the following—solid �green� circles mark the ini-
tial position of the fluid-air interface. Open symbols—triangle �yel-
low�, circle �blue�, and diamond �violet� mark the position of the
advancing interface after 3, 4, and 5 steps, respectively. Squares
�red� show the distribution of the displaced fluid after 6 steps.

FIG. 4. �Color online� Simulated plate separation as function of
time for several lifting pressures are represented by the symbols, the
lines are exponential fits. All quantities are in arbitrary units.
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FIG. 5. �Color online� Experimental plate separation as function
of time is represented by the symbols, the line is the exponential fit.
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FIG. 6. �Color online� Simulated area of contact of fluid, as
function of time for varying viscosity is shown. All quantities are in
arbitrary units.
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At a glance Fig. 7 shows that the fingers formed look
quite realistic, when compared with experimental results
shown for the plane plates in Fig. 1. The initial broadening
and later tapering nature of the fingers is reproduced, as is
the suppression of several fingers due to screening. The
square lattice used in the simulation, makes the finger bound-
aries somewhat artificially jagged at some places. Smoother
contours may be obtained by taking larger systems with a
finer mesh of points, thus requiring more computer memory.

B. Grooved plate

The groove diameter for the circular groove and the side
for the square groove are chosen to be 16. For smaller val-
ues, the effect of the groove is much less noticeable, and for
larger values, it comes too close to the periphery.

In the present paper, we stop the simulation as soon as the
groove is reached, the study can be extended to let secondary
fingers proceed from the groove to the center. Multiple
grooves as shown in Fig. 1�C� can also be introduced in
future. However, for the present simple case, results are al-
ready quite interesting. Figures 8 and 9 show the simulated
pressure distributions for the plate with a square and a circu-
lar groove, respectively.

On comparison with the simulated grooved patterns, Figs.
7 and 9 with B and C in Fig. 1, we see that the essential
features introduced by the grooves are reproduced. The cir-
cular groove stabilizes pressure gradients and a larger num-
ber of fingers grow longer, compared to the plane plate pat-
terns. The fingers and the grooves disturb the otherwise
monotonic pressure distribution.

Difference between the square and circular grooved pat-
terns is also noticeable. In Fig. 1, experiments show that with
the circular groove, all fingers grow more or less equally,
while in the square groove case, growth is favored toward
the corners. This is expected, since the pressure gradients are
stronger here. Looking at Figs. 8 and 9, we see that this is
exactly the case in the simulation too.

Figure 7 shows the pressure distribution for the plane
plate during fingering. The different colors �shades� represent
ranges of pressure with a difference of 1 in arbitrary units.
The pressure at the center is −30.3 and it is 0 at the boundary.
The white gaps are the penetrating fingers.

The simulated patterns shown have same initial condi-
tions and all other parameters have the same value, to facili-
tate comparison. The time for growth is 6 time steps. The
exact number of steps required to reach the center or a
groove, depends of course, on the initial stochastic fluctua-
tion at the boundary. We show patterns for the same random

FIG. 7. �Color online� The pressure map in a plane plate geom-
etry after 6 time steps. Zero pressure outside the pattern and within
the fingers is shown in white. The pressure becomes more and more
negative as one moves toward the center. Different adjacent colors
�shades� represent regions with a different range of pressure. A
finite number of colors is used and the sequence is repeated, so
same color does not necessarily mean same pressure.
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FIG. 8. �Color online� The pressure map for a circular grooved
plate, after 6 time steps, after which the fingers meet the groove.
Zero pressure, outside the pattern and within the fingers is shown in
white. The pressure becomes more and more negative as one moves
toward the center. Different adjacent colors �shades� represent re-
gions with a different range of pressure. A finite number of colors is
used and the sequence is repeated, so same color does not neces-
sarily mean same pressure. The position of the groove is marked in
black.

��
��������
����
������
����

����
����
������
����
��������
����
����
����

�
����
��
���
��
����
��
��
��
��

����
��������
����
������
����
��������
����
����
������
��������
����

��
���
����
��
���
��
����
��
��
���
����
���
�

������
������
��������
����
������
����
��������
����
����
������
��������
����

�
����
���
����
�
�

�

�
���
����
��
�
�

����
��������
������
��������
����
������
��
��

����
������
��������
������
������
��
��
��

��
����
��������
������
��������
����
��
��
������
��
����
������
��������
������
������
��
��
����

��
���
����
���
����
��
��
�
���
�
��
���
����
���
���
�
�
��
�

����
������
��������
������
��������
����
������
����
��������
����
����
������
��������
������
������
��
��
������
����

���
���
����
���
����
��
���
��
����
��
���
���
����
���
���
�
�
���
��

������
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
������
��
��
����
��
��

�
����
���
����
���
����
���
����
���
����
���
����
���
����
���
���
�
�
���
���
�

�
���
���
����
���
����
���
����
���
����
���
����
���
����
���
���
�
�
���
���
�

����
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
������
��
��
������
������
��

��
����
���
����
���
����
���
����
���
����
���
����
��

��
��
������
������
��������
������
��������
������
��������
������
��������
������
��������
������
����

����
����
��

�
���
����
���
����
���
����
���
����
���
����
���
����
���
��
�
�
��
���
�
�
��

��
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
������
��
����
��
��
������
������
��
��
����

�
����
���
����
���
����
���
����
���
����
���
���
�
�
���
���
�
�
��

�
���
����
��
���
���
����
���
����
���
����
���
����
���
����
���
��
�
�
���
���
�
�
��

��
������
��������
����
������
������
��������
������
��������
������
��������
������
��������
������
��������
��

��
����
���
����
���
����
���
����
���
����
���
��
���
���
�
�
��

����
��������
������
��������
������
��������
������
��������
������
������

��
����
���
����
���
����
���
����
���
����
���
���
�
�
���
���
�
�
��

��
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
������
��
��
������
������
��
��
��

��
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
������
��
��
������
������
��
��
����

�
��

��
���
����
���
����
���
����
���
����
���
����
���
���
�
�
���
���
�
�
��

��
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
��������
������
������
��
��
������
������
��
��
����

��
����
���
����
���
����
���
����
���
����
���
����
���
����
���
���
�
�
���
���
�

��
������
������
������
��
������
������
��������
������
��������
������
��������
������
��������
������
������
������
������
��
��
��

��
����
���
��

��
���
����
���
����
���
����
���
����
��
�

�
�
�
�

��
��������
������
��

��
������
��������
������
��������
������
��������
����
������

����
��
��
������
������
��

��
��������
������
��

��
������
��������
������
��������
������
������
��
����

����
��
��
������
����

���
��

��
����
���
���
��
��
�
�

�
�
�
���
�

����
����

������
������
��������
������
����
��
����

����

��
��
��
������
����

��
��

���
���
����
���
�
�
��

���
�
�
�
�
��

��
����
��������
������
��������
������
��������
������
��

������
������
����
��
��
����

�
���
���
����
���
����
��

�
���

���
���
��
�

�
����
���
����
���
����
���
�
�
����
�
���
���
���
�

����
������
��������
������
��������
������
��
��
��������
����
������
������
����

��
��
���
���
����
���
���
�
����
��
���
���
�

��
������
������
������
��������
������
��������
����
��������
����
����
��

�
����
���
����
���
����
��
��
�
�

��
����
��������
������
��������
����
����
��

�
���
���
����
��
��

�

FIG. 9. �Color online� The pressure map for a square grooved
plate, after 6 time steps, after which the fingers meet the groove.
Zero pressure, outside the pattern and within the fingers is shown in
white. The pressure becomes more and more negative as one moves
toward the center. Different adjacent colors �shades� represent re-
gions with a different range of pressure. A finite number of colors is
used and the sequence is repeated, so same color does not neces-
sarily mean same pressure. Fingers grow preferentially toward the
corners of the square. The position of the groove is marked in black.
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number sequence in Figs. 7–9, so that finger growth can be
compared explicitly. We note that the fingers marked 1, 2, 3,
and 4 in Fig. 8 which grow longest, are suppressed in Fig. 9,
since they are not growing toward the corners of the square
groove. Reproducibility of the essential features has been
checked with several other random number sequences, these
patterns are not shown here.

In the simulated figures it looks as if there are isolated air
pockets within the fluid, or that some of the fingers are not
connected to the air outside. However this is not the true
situation, the reason is that the initial indentations at the
boundary are produced in the polar coordinate picture, where
the number of points is 24�360. When mapped onto the
square lattice with a much lower number of points, some of
the sites occupied by air are lost.

An exact comparison between simulation and experiment
is rendered difficult by the fact that the extra fluid and larger
depth at the grooves has not been taken into account. As-
sumption that the same volume of fluid with and without
grooves will produce an initial blob with the same radius
cannot be true in reality.

VI. CONCLUSIONS

To conclude, the complex viscous fingering process with
grooved plates, can be generated by a simple computer algo-
rithm. It appears that the major effect of the grooves is mani-
fested through a redistribution of pressure, rather than a local
change of depth. Another effect is the change in speed of
finger growth �11�.

Studies on viscous fingering in different conditions and
with different fluids have been reported. Fingering in LHSC
with ferrofluids �22� and liquid crystals �23� have also been
done. Viscous fingering with anisotropy has been simulated
in �10�, but that is for the normal HS with a network pattern.
The current attempt at simulating fingering with etched
plates in the LHSC shows encouraging results.
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